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A method of predicting two forest <stand .stmlcture attri- 
butes, basal area and abovegku nd biomass, from mea- 
.surement; of forest vertical structure was developed awl 
tested using field and remotely sensed canopy .strwture 
~)len,s1Lrel)leflt,s. Coincident estinu&e.s of the vertical dktri- 
bntion ofcnno~~!~ su$ace area (the canopy height profile), 
and field-measured stand .structure attributes were ac- 
quired for two data .sets. The hrorlo.s~yuerlc~ data set 
consists of 48 plots in stands distributed within 2.5 miles 
of Anrqdis, MD, with canopy height profiles meaw ret? 
in thf, field wing tile o~ticcil-fllLciflrtIt method. The stcrri- 
map data set cfmsi.sts of 75 p/f)& mbsetterl from a single 
32 ha stelri-mapped stand, zc-itll l,ieasrlreliierit.s of their 
cunopy height profiks made using the SLICER (Scan- 
ning Lidar Imager of Canopie.s b!l Echo Recoueq) in- 
.stmln~ent, an airborne surfnce lidar system. Four height 
iiidicf5s, mIx.iimlm, nuxlinn, inf3aiz, and fpadrafic niPan 
canopy height JQMCH) wfw calculated from the canop!y 
height projiks. Repssims bctzcecn the inrliccs awl 
sta,ul basal area and biomaxs were developed using t/w 
clln,nosegllence data set. ThfJ regre,s,sion equations deccl- 
aped from the clzrt,nosequr?nc,l data set were then applied 
to h&ht indicts calct~latc:d from the rcmotrl~y sensed 
ranqq height profiks .from the stem map clfitci .sct, and 
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the ability of the regre.ssion cqt&ons to predict the stem 
map plot’.s .stcml structure attributes u2a.s then evaluated. 
The QA4CH was found to explain the nuxt variance in 
tile chronoseyuence data set’s stand .stnicture attributc:s, 
and to most accurately predict the values of tlw same 
attm’bfltes in the stem map data set. For the chrono- 
seyt~encr data set, the QMCH predicted 70% of variance 
in stand basal area, anti 80% of variance in abocegron~d 
lXornasl.vs, and remained norinsyl,l2,tcJtic with basal area.s 
up to 50 ?llZ hn -I, and abovegywntl biomass va1w.s np to 
3.50 AfIg hu” ‘. When applied to the stem-map data .set, the 
regres.sion qtiations resulted in ba.sal (I reas that were, on 
average, Ilnrlerestilri~te(l brl 2. I 12 ha-‘, and birmass cal- 
ws were unrlcre.stil,ultetl by 16 Mg ha-.‘, and explained 
37% and 33% of va riancr~, respectively. L)ij$rence,s in 
the magnitude of tlte coe~icients (>f determination were 
dice to the wider range of ,stand conditions fomtl in the 
~lzronoscrllter2cr??iic~ data .x2; the .standard deviation of rwid- 
ual value.3 were louzr in that stem map data .set than on 
the uhrt,rlosc~cluencr: data sets. Stepwi.se multiple regws- 
sion was performed to predict tlie two stand structflre 
attributes wsirlg the canopy height profile data directly 
as independent variables, but they did not ilnprove the 
accuracy of the e,stimute.s o1;er the height indes approach. 
Published by Elsevier Science Inc. 

INTRODUCTION 

Most studies of forest development focus on what is 
commonly referred to as “stand structure,” the size and 
number kf woody stems per unit area, and related statis- 
tics (Miles, 1979; Oliver and Larson, 1996). However, 
the forest canopy, “the collection of all leaves, twigs, and 
branches formed from the combination of all the crowns 

0034-4257Mgl$-s(,~~ front matter 
1’11 SO034-4237(YN!OO071-6 



84 Lefky et al. 

in the stand” (Maser, 1989, p, 231), is another function- 
ally and structurally critical component of the forest. The 
canopy is responsible for the majority of material and en- 
ergy exchanges with the atmosphere, a critical habitat for 
forest biota, and a controlling influence over the micro- 
climate of the forest interior. Increasingly, species verti- 
cal position is recognized as a major determinant of suc- 
cessional status (Wierman and Oliver, 1979; Aber, 1979; 
Bicknell, 1982: Gulden and Lorimer. 1985; Smith, 1986; 
Oliver and Larson, 1996), and therefore canopy stmc- 
ture, the “organization in space and time, including the 
position, extent, quantity, type, and connectivity, of the 
aboveground components of vegetation” (Parker, 1995, 
p, 78), plays a dynamic role in forest development. 

Studies of forest development have focused on the 
size and member of stems because they are conveniently 
measured. Study of forest canopies has been hindered by 
the difficulty of characterizing canopy structure (Nad- 
karni and Parker, 1994), and various methods have been 
developed to do so from man> easily obtained measure- 
ments such as tree diameter distributions (Mawson et. 
al., 1976). A new remote sensing device developed at 
NASA’s Goddard Space Flight Center, SLICER (Scan- 
ning Lidar Imager of Canopies by Echo Recovery) (Blair 
et al., 1994; Harding et al., 1994), is able to rapidly mea- 
sure the vertical distribution of canopy surface area, 
through the integration of laser altimetry ant1 surface li- 
dar (light detection and ranging) techniques. 

Laser altimetry is an established technology for ob- 
taining accurate, high resolution measurements of sur- 
face elevations (Krabill et al., 1984: Bufton et al., 1991). 
Laser altimetry is used to measure the distance between 
the sensor and the object sensed through the precise 
timing of the round-trip return time of the backscattered 
reflection of a short duration p&e of laser light. The, 
first generation of laser altimeters for remote sensing of 
vegetation were designed to record the height to the first 
surface intercepted by the laser over a relatively small 
sampling area, or footprint, usllally less than 1 m in di- 
ameter (Arp et al., 1982; Schrier et al., 1984; 198s; Rit- 
chic et al., 1993; Menenti and Ritchie, 1994; Weltz et 
al., 1994). Returns from the top surface of the forest can- 
opy were combined with subsequent measurements of 
distance to the forest floor, obtained through gaps in the 
forest canopy, to inf& the height of the dominant trees. 
A more technically advanced versioI1 of this approach in- 
volves recording, for each individual small footprint, the 
distance to the first return from the upper surface of the 
vegetation, and to the last return from the ground snr- 
face. The distance between these two measurements is 
inferred to be the vegetation height for each footprint. 
Measurements made using these techniques have proved 
useful for predicting canopy height, timber volume, and 
forest biomass (&Iaclean and Krabill. 1986; Nelson et a]., 
1988a,b: Naesset, I997a,b), species ty-pe (Jensen et al., 
1987), and percent canopy co\‘er (Ritchie et al. 1993; 
Weltz et al., 1994). 

The SLICER instrument is one of a new generation 
of systems (Aldred and Bonnor, 1985; Nilsson, 1996) that 
augment traditional first-return laser ranging with a sur- 
face lidar capability. In surface lidar, the power of the 
entire return laser signal is digitized, resulting in a wave- 
form that records the vertical distribution of the backscat- 
ter of laser illumination from all canopy elements (foliar 
and woody) and the ground reflection, at the wavelength 
of the transmitted pulse (1064 mn, in the near-infrared). 
The use of relatively large footprints (5-15 m) is de- 
signed for the recovery of returns from the top of the 
canopy and the ground in the same waveform, while re- 
maining small enough to be sensitive to the contribution 
of individual crowns of eastern deciduous species. Cur- 
rently, the SLICER system has been mounted on various 
aircraft platforms and flown over sites in a range of foot- 
print number and size configurations. Details of the 
technical aspects of SLICER can be found in Blair et al. 
(1994) and Harding et al. (1994). 

Motivation for work relating forest attributes to lidar 
sensed canopy structure has been enhanced by the an- 
nouncement that L7CL, the Vegetation Canopy Lidar mis- 
sion, has been funded by NASA’s Earth System Science 
Pathfinder (ESSP) program (Dubayah, 1997). Scheduled 
to be launched in mid-2000, VCL will provide global 
coverage of surface LIDAR data similar to that used in 
this study. with transects of contiguous 25 m footprints 
spaced every 2 km along the Earth’s surface. 

Objectives 

This current work is part of a larger effort to verify the 
ability of SLICER to accurately measure canopy height 
profiles (Lefsky, I997), to relate the canopy height pro- 
files to simple stand structure attributes (this article), and 
to relate changes in the canopy height profiles from a 
3OO-year chronosequence to the processes of stand dy- 
namics (Lefsky, 1997). The aims of this article are: 1) to 
determine if estimates of two stand structure attributes, 
basal area and aboveground biomass, can be made using 
indices derived from field-measured canopy height pro- 
files, 2) to determine if regression equations developed 
from field-measured canopy height profile indices can 
accuratkly predict the same two stand structure attri- 
butes when applied to indices derived from canopy 
height profiles measnred by SLICER, and 3) to deter- 
mine the relative power of stepwise multiple regression 
using the elements of the CHP, and simple regression us- 
ing height indices, to predict basal area and above- 
ground biomass. 

METHODS AND MATERIALS 

Overview 
Two data sets, stem map and chronosequence, each con- 
sisting of spatially coincident measurements of canopy 
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and stand structure, were collected in the coastal plain of 
Maryland, USA. For both data sets, two stand structure 
attributes, basal area and aboveground biomass, were de- 
rived from field measurements of tree diameter at breast 
height. The canopy structure of the plots in both data 
sets was quantified using the canopy height profile mea- 
surement, the distribution of foliage as a function of 
height. The canopy height profiles of plots in the chrono- 
sequence data were measured in the field using the opti- 
cal point-quadrat method of Aber (1979). The canopy 
height profiles of plots in the stem map data set were 
measured by the SLICER scanning lidar instrument US- 
ing a processing algorithm based on the principles of the 
optical-quadrat method. Canopy height indices, including 
maximum, mean, median, and quadratic mean canopy 
height (QMCH), were calculated for plots from both 
data sets using their associated canopy height profile 
measurements. Regressions between canopy height indi- 
ces and basal area and aboveground biomass were devel- 
oped using the chronosequence data set. These same 
regression equations were then applied to the remotely- 
sensed height indices from the stem map data set, and 
the resultant estimates of basal area and biomass were 
compared to those measured in the field. 

Data Collection and Preprocessing 

Floristics 
Data used in this work were collected as part of a larger 
project describing the structural, floristic, and environ- 
mental development of tulip-poplar stands. The tulip- 
poplar association is the most common upland forest as- 
sociation in the coastal plain and much of the piedmont 
of mid-Atlantic North America, from the Carolinas to 
New Jersey. Though variable in composition, tulip poplar 
(Liriod!t&on tulipijb-fz) occurs at most stages of succes- 
sion. Its life cycle begins with high populations of sweet 
gum (Liyuidmnhnr ,styricijluu) or tulip poplar following 
agricultural abandonment or timbering; these species 
persist for several decades. In mature stands, the canopy 
is composed of oaks, hickories, beech, and some tulip 
poplar, with a diverse complement of mid- and subca- 
nopy species. Pines (Pinus uirgininnu and P. tae&l) are 
rarely a major component in thrse forests. 

Chronoscquence Data Set 
The chronosequence data set consists of 48 plot observa- 
tions from stands dispersed within a 25-mile radius of 
the Smithsonian Environmental Research Center (SERC), 
located in Edgewater, Maryland, USA (Brown and Par- 
ker, 1994). Stand structure information for the chrono- 
sequence data set was collected using variable-sized plots 
that were scaled roughly to the maximum height of the 
canopy; the average plot was 20 mX50 m. In each plot, 
the species and breast-height diameters of all living 
woody plants less than or equal to 2 cm in diameter were 
recorded. These data were used to estimate basal area 

directly, and to estimate the above- ground woody bio- 
mass of each plot through the use of an allometric equa- 
tion (Table 1). The equation used was that of Monk et 
al. (1970), which was developed in a forest of similar 
composition: 

loglo A=1.9757+2.5:371 log,,, DBH, (1) 

where B is the biomass per stem (g) and DBH is the 
diameter at breast height (cm). Total biomass per unit 
area for each plot was calculated as the total biomass of 
every measured stem, divided by the area of the plot. 
Monk et al. (1970) did not report the error of their re- 
gression coefficients. 

The canopy height profile (CHP) variable used to 
describe canopy structure in this data set is a modifica- 
tion of MacArthur and Horn’s (1969) foliage height pro- 
file (FHP) variable, While some investigators have mea- 
sured height profiles directly, through stratified clipping 
(Fujimori, 1971) or point quadrat techniques (Warren- 
Wilson, 1958; 3965; Miller, 1967; Ford and Newbould, 
1971), these methods have largely been supplanted by 
the optical-quadrat method. Using this method, optical 
point quadrats are established and multiple observations 
of vertical distance to first leaf intersection are made us- 
ing a caniem equipped with a zoom telephoto lens. This 
distribution is iised to estimate the cumulative percent 
cover of foliage as a function of height, The estimate of 
cover is transformed into the vertical distribution of foliage 
using a method that assumes that leaf angle is constant 
and that the horizontal distribution of leaves is random. 

Using these assumptions the amount of foliage that 
results in the observed changes in cover can be calcu- 
lated, USing aJ1 e(patiOJJ [(q. (211 &J&d from the’ POiS- 

son distribution: 

FHPr(h)=-ln(I-cover(h)), (2) 

where FHP(:(h) is the cumulative one-sided leaf surface 
area (or LAI, leaf area index), expressed as a fraction of 
projected ground area, above height h, and cover(h) is 
the fraction of sky not covered by foliage, above height 
h. The actual FHP is calculated from FHP,(h) by calcu- 
lating the additional LA1 at each height interval, with re- 
spect to that above it. The theory behind the original ap- 
plication of this technique is found in MacArthur and 
Horn (1969), and a validation of the method is presented 
in Aber ( 1979). 

The FHP is the distribution of foliage surface area 
as a function of canopy height, from the ground to the 
top of the canopy. In contrast, the canopy height profile 
(CHP) is the surface area of nil canopy material. foliar 
and woody, as a function of height. Combining foliar and 
nonfoliar materials was necessary so that field and re- 
motely sensed canopy height profiles could be compared. 
This is because the single-wavelength SLICER system 
cannot distinguish between various sources (bark, foliage, 
soil) of backscattered illumination. In order to measure 
the CHP in the field, the distribution of the height to 
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Table 1. Stand Attributes for the Chronosequrnce and Stemmap Data Sets 

Dataset Clfronosequence Sternnup 

Stem data s011wc 4x plot obscm%ltions 7.5 plots 
Snhsetted finm a 

32 ha strmmap 
Canopy height profile source Optic;ll q~~&at SLICER wavrforms 

I,Iethotl 
Nmllher of plots 48 75 
Mean basal arcu (mP hat’) 36.1 373 
Mean alx~vc-ground biomass x3.5.9 239.0” 

(mg ha-‘! 
Mainrrml c;lnqq hrigllt (m) 

Mwimrmr 40.0 44.0 
MCWl 26.5 36.2 
Minimum 4.0 no.0 

Mean QMCII (m) -14.4 lb.1 

“B~rsd area ard alcove-gr~untl t)iomass rc~portrd for the stemmap dat;c sc,t ;\rc for prctlictcad 
2 cm stand stnlcturc~ attrihlltes. 

the first intersection of any canopy structure t,ype is re- 
corded, rather than only intersections of foliage. Either 
canopy or foliage height profiles can be calculated as rel- 
ative (with the total vector scaled to 1) or absolute (with 
the total vector scaled to the total leaf or plant area index 
of the canopy). In this work relative canopy height pro- 
files arc used exclusively. 

Stem Map Data Set 
Thrl stem map data set combines field observations of 
forest stand structure with coincident remotely sensed 
observations of canopy structure. The measurements of 
basal area and biomass for this data set came from a11 

existing 32 ha stand at SERC in which every stem 
greater than 20 cm dbh has been mapped. The SLICER 
instrument was flown over the stand in September 1995, 
in a five-beam cross-track configuration. The SLICER 
footprints were georeferenced by conlbining the ranging 
data with laser pointing and airc:raft position data, ob- 
tained by a Inertial Navigation Systerll and a kinenlatic 
Global Position System trajectory,. respectively. The stem 
map and SLICER transects were then registered to a 
digital orthophoto quadrangle (Maryland DNR, 1991), 
which was reprojected to the UTM projection (Fig. la). 
The stem map was geolocated by matching the roads as 
recorded on the photo to the areas without trees within 
the stem map, which are associated with the roads, After 
conversion of the georeferenced SLICER data to the 
UTM projection, a systematic offset of unknown source 
was noted between forest edges in the orthophoto and 
as expressed by the SLICER canopy heigllt profile. In 
order to ensure proper registration between the stem 
map and the SLICER footprints, the SLICER data was 
translated to match forest edges in the orth(~photos. Or) 
this basis, the error in the relative positions of the stern 
map and SLICER transects should be reduced to less 
than I5 m. 

To calculate basal area and biomass from the stem 

map data set, the georeferenced tree and SLICER wave- 
form data were processed using programs written in IDL 
(Interactive Data Language, Research Systems Inc, Boul- 
der, Colorado). For this study, the trksect of remotely 
sensed data was five laser footprints wide, with each 
footprint nominally 10 m in diameter, and nominally 
spaced at 10 m intervals in along- and cross-track dimen- 
sions. Data from the two outer footprint positions in 
the transect were discarded due to anomalous height 
measurements. The anomalous height measurements are 
thought to be due to low instrument signal-to-noise 
caused by misalignment between the footprint crosstrack 
scan pattern and the outer edges of the instruments re- 
ceiver field-of-view. Three by three blocks of SLICER 
footprints were selected from tlte central three of the 
five cross track footprints (see Fig. lb); each 3x3 block 
was considered to be a single plot. of a possible 104 
samples within the vicinity of the stem-mapped stand, 75 
were selected for analysis. The remaining plots were elimi- 
nated due to their proximity to either the edge of the 
stem-mapped area, a clearing, or roads within the stand, 
because they overlapped with other plots, or were in the 
vicinity of an instrumented tower within the stem map. 

.4 mask was generated for each 3x3 block of 
SLICER waveforms (Fig. lb), to dett,rmine which stems 
fill within the area sensed by the instrument. The mask 
was fit to the outermost positions of the four corner 
waveforms, which were calculated as occurring 7.07 m 
from the center point of each corner waveform. All 
stems within the mask were extracted and the total basal 
area and biomass [as calculated using Eq (l)] of those 
stems was divided by the area of the mask, in hectares 
(see Fig. lb). 

Canopy height profiles for each plot in the stem map 
data set were calculated using the plot’s nine SLICER 
waveforms. Validation of the SLICER system and the 
processing sofhvare’s ability to remotely sense canopy 
height profiles can be fimnd in Lrfsky (1997). Briefly, we 
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A. 

Figfire 1. A) Illustration of’ th 
SLICER footprints overlain on th 
SERC stem map and R) detail oi 
the sampling geometry. 
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hypothesized that the power of the backscattered laser 
illumination is subject to the siune process of occllwion 
observed in the field measurements of height to first in- 
tersection, and modified the MacArthur-Horn method to 
apply this approach to the SLI(:ER return energy wave- 
forms. The most critical step in the modification of the 
MacArthur-Horn routine was the separation of the por- 
tion of the waveform returned from the ground surf&e 
from the halance of the waveform (Fig. 2a). The ratio of 
the power of the “ground return” to the total signal 
power is inversely proportional to the total canopy cover. 

but to estimate canopy cover, the ratio must he adjusted 
to account for differences in ground and canopy reflec- 
tance at 1064 nm. We did this hy assuming that the ratio 
of canopy and ground reflectance is approximately 2:l. 
The total horizontal canopy cover at each height incre- 
ment can then he calculated, which allows the use of the 
MacArthur-Horn equation (Fig. 2b). The processing that 
implements this algorithm wdS tested using four dissimi- 
lar stands at SERC. A two-sample, uneven sample size, 
Ch-square goodness-of-fit analysis was performed to de- 
termine if there were statistically significant differences 
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A. Ground Return Processing 
1. The first step in processing the lidar 
waveform is the identification of the 
peak of the ground return, which is 
assumed to be the mean elevation of 
the forest floor. 
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1. After the ground return is delineated from the remainder of the waveform the fraction 
200 , , , , , , , , , , . , , , , _ of totA power returned from the canopy can be calculated. Canopy COYEX cm then be 
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Return Energy (Digitizer Counts) 2. The cumulative cover fraction can then be transformed using the MacArthur-Horn 
(1969) equation, CHP,(h) = -In(l-cover(h)), where CHPJh) is the one- sided plant area 
index above height (h), and cover(h) is the fraction of sky covered by canopy. 

3. Cumulative CHP is differenced and scaled to 1, to create a relative canopy height 
profile. Height indices can then be calculated from the canopy height profile. 

Figure 2. Steps in the transformation of the Ii&r wavcforrn into an estimate of the vertical distribution of canopy 
surface area, the canopy height profilp. 

between field- and SLICER-derived canopy height pro- 
files. The canopy height profiles measured in the field 

Comparison qf Stemnap and Chronosecltlence Stmd 
Structure Attrihte.~ 

and from SLICER were statistically indistinguishable 
(Lef+, 1997). In this work, an interactive version of the 
waveform processing algorithm was used to improve the 
identification of the position of thr- ground return. 

Stand structure attributes for the chronosequence data 
set were measured considering all stems greater than z 
cm. The stem map, in contrast, was mapped using a min- 
imum diameter of 20 cm. To allow comparison of the 
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attributes measured using the 20 cm and 2 cm limits, we 
generated a set of 20 cm limit structure attributes for 
the chronosequence data set, so that we had both 2 cm 
and 20 cm limit stand structure attributes for that data 
set. Using this data, we estimate that stems between 2 
cm and 20 cm DBH account for 13% of total basal area 
and 8% of aboveground biomass. Regressions with the 
20 cm structure attributes as independent variables and 
the 2 cm structure attributes as dependent variables 
were performed. The resulting regression equations were 
then evaluated for their suitability in estimating 2 cm 
limit basal area and biomass from the 20 cm limit data; 
that is, to determine if there was variability in the 2 cm 
limit measurements that was not explained by the 20 cm 
limit measurements, specifically in the range of condi- 
tions over which we want to apply these equations. 

Canopy Height Indices 
To relate the field and remotely-sensed canopy height 
profile measurements to the stand structure attributes, 
we reduced the vector information in the CHP to four 
height indices. W e chose to use the following height in- 
dices: maximum canopy height, mean canopy height, me- 
dian canopy height, and QMCH. In this discussion, the 
canopy height profile is treated as a vector of I-m-high 
elements, with the value for each element equal to the 
fraction of the total profile in the height range of that 
element. For example, the first element in the CHP vec- 
tor represents the fraction of total canopy surf&c area 
between 0 and 1 m above the ground. 

Maximum canopy height is calculated as the height 
of the highest canopy height profile element that has a 
value greater than zero. Median canopy height is calcu- 
lated as the height of the highest element below which 
no more than SO% of the total canopy height profile is 
distributed. Mean canopy height is calculated z the sum- 
mation of the product of the canopy height profile and 
the height of each element. The QMCH is defined as 

QMCH= Cl31 

where CHP[i] is the fraction of total foliage at height I. 
Regressions between coincident field and SLICER 

measurements of the maximum, median, and quadratic 
mean canopy height have previously been performed us- 
ing a data set of I2 plots in two eastern deciduous for- 
ests. as described in Lefsky (1997), where each of the 
plots had both field and SLICER measurements of can- 
opy structure. Among the 12 plots were four from the 
chronosequence data set. Analjlsis at that time indicated 
that SLICER-measured indicks of height were closely 
correlated with those measured in the field (field vs. 
SLICER height, R”=‘iG%, median height, R’=6870, qua- 
dratic mean canopy height, R’=78%, e.g., Figure 3). In 
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Figure 3. Regressions between field ard SLICER 
measured q~laclratic mean canopy height (QMCH) from 
Lefsky (1997). Field QMCH=2.002+0.798*SLICER 
QMCII, R2=0.78. 

that work, a positive bias was noted in the equations re- 
lating the SLICER measurement of height indices to 
field measurements. Subsequent reanalysis of that data 
set indicates that intercepts of those equations are not 
significantly different from zero, and their slopes are not 
significantly different from 1.0. Therefore, no corrections 
were applied to the SLICER measured indices of canopy 
structure in the current work. To evaluate the relation- 
ships among the four height indices, we plotted them 
against each other and calculated their 1-2 values. using 
data from the chronosequencr data set. 

Linear Regression 
Linear regression was used to develop equations relating 
height indices to basal area and biomass (Objective 1). 
Four equations were developed for both basal area and 
aboveground biomass, one using each of the four height 
indices, for a total of eight equations. Data for the devc4- 
opment of the equations came from the chronosequence 
data set, which has field-measured height indices. Re- 
gression between the height indices and aboveground 
biomass indicated that there was a consistent, positive 
correlation between the independent values and the vari- 
ance of the residuals, and therefore aboveground bio- 
mass values were transformed using a square root. To 
assess the relative explanatory power of each height in- 
dex, the P between each height index and both stand 
structure attributes in the chronosequence data set was 
calculated, as well as the standard deviation of the resid- 
uals. For the square-root transformed aboveground bio- 
mass, the 6 reported is for the transformed variable, all 
other statistics were calculated using the back-trans- 
formed predictions. 

The resulting equations were then applied to the 
SLICER-measured height indices from each plot of the 
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stem map data set (Objective 2), to produce predicted 
stand structure attributes for that data set. The applica- 
bility of the regression equations to the stem map data 
set was evaluated in two ways. For each equation we cal- 
culated the residual between the predicted and observed 
(stem map) stand structure attributes, and the residuals’ 
mean and standard deviation. A final check on the appli- 
cability of the chronosequence derived equations to the 
stern map data was performed using regression between 
the val~ws predicted for the stem map plots using each 
of the equations, and those observed in the stem map 
data set. The coefficients of these regressions were then 
tested to determine if they differed significantly from 
those expected if the actual relationship was the identity 
equation: 

where Bo=O and B, = 1. Preliminary results indicated that 
the r2 valur:s between the predicted and observed stand 
attributes for the stem map data set were smaller than 
those which were obtained for the regressions between 
the height indices and stand attributes made using the 
chronosequcnce data set. One difference between the 
two data sets is the narrower range of conditions, of both 
stand attributes and height indices, in the stein inap data 
set. In order to determine if this was a factor in the 
lower P values, correlation coefficients between each of 
height indices and each of the stand attributes were cal- 
culated, for four data sets. These data sets were: all plots 
from the chronosequence data set, all chronosecjuence 
plots less than 30 m tall, all chronoseqLtr,llce plots greater 
than or qua1 to 30 m tall, and all stem map plots greater 
tl1m or eqLl”1 to 30 111, whicll inchlded all the stem 
map plots. 

Stepwise Multiple Regression 
Stepwise multiple regression has heen proposed as a 
method to predict basal area and stem volume from ver- 
tical canopy profile measurements (Hyyppa and Pulli- 
ainen, 1994). Stepwise multiple regressions were per- 
formed to check if mow variance in the stand structure 
attributes was explained by linear combinations of the 
canopy height profile elements than hy the indices de- 
rivrd from it. These regressions were conducted using 
the elements of the canopy height profile, aggregated to 
11 4-111 resolution bins, as the independent variables. For 
example, the first independent variable was the fraction 
of the CHP between 0 and 3 m above the ground. 

RESULTS 

Overview 
Regression analysis between 20 cm and 2 cm stand attri- 
hutes indicated that basal area and aboveground biomass 

measurements made using the 20 cm limit could accu- 
rately predict 2 cm attributes (Figs. 4a and 41~). There- 
fore, stand structure attributes for the plots from the 
stem map data set, which had been measured using a 20 
cm limit, were transformed using the resulting regression 
equations. so that they could be compared directly to at- 
tributes from plots in the chronosequence data set. 
Height indices calculated front each plot’s CHP were 
highly correlated with each other, but maximum canopy 
height wz least well correlated with the other indices 
(Fig. 5). High correlations between all of the height indi- 
ces and both stand structure attributes were observed as 
results of the regression analJ,sis using data from the 
chronosecluence data set (Fig, 6). We then calculated es- 
timated stand attributes for the stem map data set, using 
the equations from this chronosequence regression anal- 
ysis and height indices from thfl stem map clata set (Fig. 
6). While correlation coefficients between the observed 
and these new predicted estimates of stand attributes 
were lower than the correlation coefficients obtained 
when developing the original equations, other measures 
of the predictive power of these equations, such as the 
standard deviation of residuals, were similar (Tables 2 
and :3). The QMCH index was found to be the most reli- 
able predictor of basal area and biomass when results 
from the stem map and chronosequence data sets were 
considered. Equations developed using stepwise multiple 
regressions explained as much \~ariance as those resulting 
from simple regression using the height indices, but their 
predictions of thr stand attributes of the stem map plots 
were not as accurate. 

Prediction of 2 cm Stand Structure Attributes 
from 20 cm Stand Structure Attributes 

Using the chronosequence data set, strong linear rela- 
tionships were found between basal area and biomass 
measured with the 2 cm limit and the same attributes 
measured with the 20 cm limit. For both basal arra and 
aboveground biomass (Figs. 4a and 4b) the relatioilships 
consist of a range of low values in which the two vati- 
ables are weakly correlated, and a range of higher values 
in which the two variables are \-cry strongly related. Thc~ 
range of values found for each stand attribute from the 
stem map data (as measured using the 20 cm limit) are 
indicated on the graphs, and indicate the range over 
which we want to use the rc>lationship. Within the range 
of stand structure attributes observed in the stem map 
data set, the relationship between then 2 cm and 20 cm 
limit indices remains highly correlated and linear. Re- 
gression equations for each attribute were developed L~S- 

ing only the data that fell within the range where thr 
relationship between the 20 cm and 2 cm measurements 
were well correlated. The equations developed arc: 
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Basal Area?= 12.503+0.809~Basal~,~, 

r2=93%, P<O.OOl, 

Biomassz=38.016+0.Y34*Biomasszo, 

r2=99%, P<O.O001.. 

These equations have been used to estimate 2 cm limit 
stand structure attributes for the stem rnap plots. All 
subsequent analyses are for 2 cm limit attributes. 

Relationships among Canopy Height Indices 
High levels of correlation were found between each of 
the four canopy height indices, as illustrated in Figure 5, 
hut there was some variability. Maximunl canopy height 
has the lowest correlation to the other variables, espe- 
cially for taller stands. Median canopy height is highly 
correlated to the two mean height indices. The two mean 

height indices, the mean canopy height and the QMCH, 
are the most highly correlated of the variables. 

Relationship of Canopy Height Indices to Basal 
Area and Biomass 
For the chronosequence data set, all four height indices 
considered in this work were highly correlated with both 
basal area and aboveground biomass, with ti dues Iw- 

tween 60% and 80% (Table Ba). In all cases, the correla- 
tion between the height indices and aboveground biomass 
was higher than the corresponding correlation between 
the height indices and hasal area. The standard devia- 
tions of the residuals resulting from each regression arr 
lowest when the r! values are highest. Of the four equa- 
tions predicting basal area, tile QMCH has the largest i 
v&e and the smallest standard deviation of residuals. Of 
the four equations predicting aboveground biomass, max- 
imum canopy height and the QMCII both explain 80%~ 
of variance, but maximum canopy height has a smaller 
standard deviation of residuals. The absolute diff&cnces 
in these two indicators (6 and the standard deviation of 
residuals) betwren the height indices are small in magni- 
tude, and the differences in i are nonsignificant statis- 
tically. 

The ability of each of the regression equations to 
predict the basal area and biomass of plots in the stem 
map data set was evaluated in several ways. Scatterplots 
of predicted and observed basal area and biomass are 
presented in Figure 6. For each stand attribute, the two 
best equations were schlected fbr inclusion in Figllre 6 on 
the basis of the goodness-of-fit statistics presented in Ta- 
ble 2. Examination of the figures indicate that the vari- 
ability of the stem map data set plots is similar to that 
of the chronosequence data set. However, the r? val~m 
of the predicted vs observed regression equations are 
mucli lower than those of the regression equations pre- 
dieting stand attributes from height indices. This resldt 
must he viewed within the context of the wider range of 
conditions observed in the chronosequence plots. For a 
constant number of data points distributed around a lin- 
ear relationship with a specified standard deviation, the 
amount of’ variance explained by the linear relationship de- 
clines with decreasing range of the independent variable, 

This effect is demonstrated by Table 3, which docu- 
ments the coefficients of determination between each of 
height indices and the two stand structure attributes for 
the four data sets defined in tile methods. The high de- 
termination coefficients obtained using the entire chro- 
nosequence data set al-r maintained in the subset of plots 
shorter than 30 rn tall. In rve~-); case hut one (QMCI-I 
and basal area), determination coefficients drop when 
chronosequence plots equal to or taller than 30 m are 
considered. When these determination coefficients are 
compared to those calculated using the stem map data 
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set, differences still exist, but they are much smaller than area and biomass, mean canopy height and the QMCH 
the differences obtained when the stem map plots are have the mean residual values with the lowest mag- 
compared to the total chronosequence data set. nitudes. 

Another index of the strength of the relationships in- 
clude the xwan and standard deviation of residuals. The 
mean residual indicates the total accuracy of all the pre- 
dictions made with an equation, while the standard devi- 
ation of residuals indicates the ability of each equation 
to predict individual values. The mean residual values fbr 
the basal area equations resulted in a error between 
-9.9 and 7.2 rn’ ha-’ , or between -25% and +lY% of 
the mean basal area for the stem map plots. The mean 
residual values for the aboveground biomass equations 
resulted in R error between - 130.1 and 80.2 Mg ha-’ , 
or between -34% and 21% of the mean biomass for the 
stem map plots. Of the four equations predicting basal 

The standard deviation of residual values for the 
basal area equations ranged between 4.4 and 6.5 m’ 
ha-', and were in each case lower than those observed 
in the original regressions. Although the differences be- 
tween the equations are small in magnitude, they do rep- 
resent meaningful differences when compared to the 
standard deviation of the dependent variable, basal area, 
which is 5.$5 m2 ha-‘. The equation that uses the median 
canopy height has residuals who standard deviation is 
larger that 5.5 m2 ha-‘, due to its extremely poor fit. The 
reduction of the standard deviation from 5.5 to 5.3 m” 
ha-’ represents a 7% reduction in variance, while the re- 
duction from 5.5 to 4.4 represents a 37% reduction. Sim- 
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ilarly, the standard deviation of the stem map biomass 
values is 56.4 Mg ha- ‘. The equations using maximum 
and median canopy height have residuals whose standard 
deviation is larger than 56.4 Mg ha-‘, also due to their 
poor fit. The reduction of’ the standard deviation of bio- 
mass residuals from 56.4 to 50.9 Mg hit-’ represents a 
20%’ reduction in variance, while the reduction of the 
standard deviation from 56.4 to 46.7 Mg ha-’ represents 
a 33% reduction in variance. Of the four equations pre- 
dicting basal area, tile QMCI1 and the mean canopy 
height had the lowest standard deviation of residuals. 
The QMCH and the mean canopy height also had the 
lowest standard deviation of residuals of the four equa- 
tions predicting aboveground biomass. 

Of the predicted vs. observed regression for the four 
equations predicting basal area, both the maximum and 
median caqy height had a slope and intercept signifi- 
cantly different from 1 and 0, respectively. The other 
equations had non-significant revalues of similar magni- 
tude. Of the fbur equations predicting biomass, the 
equations using maximum, median, and mean canopy 
height had either one or both coefficients that were sig- 
nificantly different from those expected. 

Stepwise Multiple Regression 
Results from the stepwise multiple regression analysis 
are presented in Table 2B. The equations predicting 
basal area and biomass make their predictions from the 
sanw three variables, the fraction of the total profile be- 
tween 16 111 and 20 m above the grolmd, between 28 m 

and 32 m above the ground, and between 36 m and 40 
m above the ground. The three slope coefficients appear 
to increase exponentially as a function of height. The 
equation predicting basal area explains nearly as much 
variance as the most correlated height index (69% vs. 
70% for the QMCH), and has a lower standard deviation 
of residuals then any height index (7.7 mL ha-’ vs. 7.8 m” 
IlaP’ for QMCH). ?l le equation predicting aboveground 
biomass explains slightly more variance than as the most 
correlated height indices (81% vs. 80% for maximum 
canopy height and QMCH), and also has a lower stan- 
dard deviation of residuals then any height index (61.4 
Mg ha-’ vs. 75.4 Mg ha-‘). 

The equations cierived from the stepwise multiple 
regression were then applied to the stem map data set 
(Table 2B). Both equations have residual statistics that 
were near the best of the height index equations. The 
predicted vs. observed regressions for both basal area and 
biomass had intercepts that were significantly different 
from what would be expected. assuming the identity re- 
lationship (see Fig. 6), and the equation predicting basal 
area had a slope that was also significantly different, 

DISCUSSION 

Relationship of Canopy Height Indices to Basal 
Area and Biomass 
The development of equations relating height indices to 
basal area and biomass indicated that, although there 
were some differences in the predictive abili$ of the 
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T&e 2. Hegression Equations for Linear (A) and Stepwise Multiple Kegrrssions (B,Y 

A. Re.7ult.s of Linmr Re~re.ssion.s 

Depende~~t 
17u riahk 

Ori~innl Kegrrssions LCrg Firld Lhtn fh~rz 
t1w Clrrorrt~seqI4c~rl(~~~ Ikltn St 01 = AYi 

4Qnntirm I2 

Applicc4tirm of Regmsions to Sternrnup Dutu (II = 75) 

Prerlicterl us. 01mwi~d 
Vduesfor the ~t~WllMl~J 

Da tn Set 

Resicl~4ul Stutistics 
Strlec” ~ ~ 

(Ohsen~ed= B,,+ B, Prdicterl) 

(If Men 11 Wed of Ho B, 
Residual Residcul Residmls r! P(B,,=O) P(h,=l) 

Hasal area 
(mYha) 

7.X4+ 1.07*Mitximulll 
canrqy Height 

9.80+2.13’Mrtlia~~ 
(hrop Ifc+ght 

6.34+2.:3o*Mwll cmpv 
Hright 

6.05+2.08”QL1(:11 

13iolna‘;s (2.77+0.43”M1Luilrllltll 
(mg/h:1) (~;mop~ Height)’ 

(4.;Y+O.7H”Metliarl 
(hwpy IIcight)’ 

~3.16+0.Nli*Mcan 
( hwpy I Iright 1’ 

i2.Bo+o.ho~~M~:~I)? 

p<o.o001 
66% 

p<0.0001 
65% 

p<0.0001 
70% 

p<o.ooo 1 
X0% 

p’0.0001 
70% 

p4.0001 
73% 

p<o.o001 
HO% 

),<0.0001 

5.9 -9.9 .X3 

H.3 7.2 6.3 

x,.3 1.9 4.7 

7.8 -2.1 4.4 

T3.Y -130.1 62.1 

91.6 x0.2 6X. 1 

x9.0 28.3 50.8 

751 -16.5 46.7 

16% 

3% 

2.qv 

:37x 

20% 

0% 

21% 

33% 

9.3 
p4.02 

:31.2 
p<o.o001 

:3.4 
p=O36 

-4.x 
p=O.17 

87.8 
p=O.OOl 

“20.7 
p10.0001 

X0.8 
p=o.o02 

28.1 
,I =0.22 

0.60 
/‘<0.0001 

0.22 
p10.0001 

0.96 
p=O.68 

I.1 
p=O.G 

0.4 1 
pa0001 

0.1” 
~“0.0001 

0.75 
p-0.019 

0.83 
,,=0.07 

B. Re.su1t.y of Step&se M4ltiple Regrwvion 

Applicution of Rqymions to Stemmup Dutu ( n = 7.5) 

Yrerlicterl cs. Oh.w-wtl 
Origirlal Regrtxsion.~ Using Field Dutu fiml 

the Clzrolzl,sequence Datu Set (11 =&‘I’) 
Vol~4c.s jbr the S~ernlruq~ 

Datu Svt 
Re.rirluul Stati.stic.3 strldl _________ (Obserwd= B,, + B , Prtdictrd) 

Dq~rnrien t of M?all St&?d of -5, B, 
~~iiriul~lc~ Equation i Residzrc4l Resirl~rul Resitlr~als i R&,=0) Pih,=l) 

Hasal arc’;, 

(1i llal 

Biomus 
(n,qha) 

2~.3+(4s,l*(;FIP[l6:.20]) 
+( 156.2”C:HP[zX:32]) 
+[244.XY:HP[36:40]) 

~1.1+(403.2”~:HP[l6:20]) 
+( 15~7.O~CrlP[Zr;::I2]) 
+i4IoY,8”(:HP[36.-10]) 

69% 7.7 6.0 -1.5 35 % 10.6 o..‘i54 
p<o.ooo 1 1’ = 0.004 p=o.123 

81% 61.4 50.2 45.x 96 9;s 86.3 0.61 
p’0.0001 ]‘<0.0001 p =0.004 

’ Colr~m~~s ll record tlw ~cune of tlw dcp&nt wriable. the> rcgressior~ rquation tix each height index, and thta i and standard dwiiation of 
wsidr& for tyuations devc~loprd 11s1ng tlata frown the cl~ronosc~qurncc~ data srt ()I =4X). Columns 5 ant1 6 rrcord the lrlcan and st&ard dp\+atim, 
of residuals which wwlt frtrm tllr appiic,ltimr of c~xlr qwtion to bright indicrs from the stcwmy dataset (n =75!. (:olumns 7-Y record t]lc $ am] 
corfficients of rrgrcwirm I)et\vecan predicted and ot)scvvrd basal area ur~d lkwss front the strmmap data set, and the sign&mc(a of thea diff&rencc 
Iwtwecwl tlw obserwd “~~r~~~lictrcl-obst~Ivc~d” rqy~~ssion. ;md iderltity. 

’ St&\ =st;rrrtl;u-tl drviation. 

height indices, those differences were small, and statisti- wootl density and stem volume, arid stem volume is a 
cally nonsignificant. Nevertheless, the canopy structure 
information summarized in the median, mean, and qua- 

function of the product of stem basal area and height. 

dratic mean canopy height indices did improve their esti- 
This means that, on a per stem basis, biomass must in- 

mates of stand basal area, albeit nonsignificantly, relative 
crease as a function of DBH to a power greater than 2, 
as in Eq. (1). In practice, this means that, as a function 

to the maximum canopy height. Maximum canopy height 
was as good or better than the other variables at pre- 

of stem diameter, stem biomass increases more steeply 

dieting aboveground biomass. This reflects a difference 
than stem bd area. As XI example, the ratio of the 
basal areas of stems 95 cm and 2 cm in diameter is 

in what the two attributes (basal area and biomass) rep EOCiO:l, while the ratio of the biomass of those two stems 
resent, and in how they are calculatd Basal area, as the is 16,000:1, an eightfold increasr,. As a result, the relative 
name suggests, is a two-dimensional measurement, and 
increases, on a per stem basis, as a function of DBH 

contribution of large stems to aboveground biomass is 
greater than their relative conttibution to basal arca. 

squared. Biomass is three-dilnrtrlsional. the product of Height indices that mostly reflect the height of the 
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Table 3. Comparison of Coefficients of Determination for Four Data Sets” 

Chrono- Chrono- 
Dependent Indepwht sequence 

Variable 
.secperw 

Variabk All P1ot.y P1&<30 1n 

Chno- 
sequence 

Plots 2.30 711 
Stemmap 

Plots 230 m 

Rasal area 
Maximum (111 60% 47% 04% 16% 
Median (:H 66% 44% 40% 3% 
Mean Cl I 65% 40% 350/ 28% 
(JM(%l 7070 44% 46% 378 

Riomn~s 
M~ximrm (21 80% 72% 39% 20% 
Median CI I 70% 67% 18%’ 0%~ 
Mean (:H 73% 63% 15% 21%, 
QMCII 80%~ 69% 29% 33%’ 

Number of plots 48 24 24 7.5 

0 All chrolIosequetlcr plots, chronoseqllence plots less tharr 30 11, tall, chrorloseciuencr $r,ts 
plots grrater than or rcl~l to 30 1x1 tall. Gu~op~ bright iq ahhreviat4 ty ~1. 

pater than or rcpal to 30 m tall, and all strmmap 

largest trees in a stand, such as maximum canopy height 
and the QMCH, should be most highly correlated with 
biomass. Conversely, basal area is more sensitive to the 
number and size of smaller stems. Indices which take 
into account the average position of foliage, such as the 
median, mean, and quadratic mean canopy height, should 
be more highly correlated with basal area. This is he- 
cause these indices represent the average height of all 
trees, not just the largest ones. The QMCH index in- 
cludes information about the distriblltion of tree heights, 
unlike ma?iimum canopy height, but weights the impor- 
tance of the taller tree heights, unlike mean or median 
canopy height. This may explain why it is highly corre- 
lated with both stand structure attributes. The relative 
contribution of large stems to biomass and basal area 
may also explain why the correlation coefficients be- 
tween the height indices and biomass are larger than the 
correlations between the height indices and basal area. 

The quadratic mean canopy height is an index devel- 
oped during the course of this work, and has no litera- 
ture supporting it. Its development was suggested by the 
quadratic mean diameter used in forest mensuration- 
the diameter of the tree with the average basal area. The 
QMCH, as defined earlier [Eq. (S)], is the square root of 
the summation of the product of the canopy height profile 
and each element’s squared height. Niklas (1996) re- 
ports that for a data set of angiosperm “champion” trees, 
the relationship between tree height and diameter is 

transforming to predict diameter results in 

D=(Hll9.1)“. 

Note the similarity of the exponent of the transformed 
equation to the square power used to weight the ele- 
ments of the canopy height profile, and the similarity of 
the exponent of the first equation to the square root 
used to transform the weighted canopy heigllt profile 

[ Eq (3)]. This suggests the canopy height profile is being 
weighted by a factor that is proportional to the diameter 
required to support it, and conversely its average is 
transformed, by the square root, to a variable that is pro- 
portional to height. 

The application of’ regression equations, developed 
using the chronosequence data set, to the stem map data 
set indicated that there were relevant differences in the 
equations suitability. The QM(:I-I and mean canopy height 
were the best predictors of basal area for plots in the 
stem map, but the QMCH is marginally superior in all 
but one aspect (mean residual) of regression qualib,,. For 
the prediction of biomass, the QMCH and maximum 
canopy height are very similar in terms of regression 
quality, but when applied to the stem map data the 
equation using mean canopy height has a higher standard 
deviation of residuals, and the slope and intercept of the 
predicted vs. observed regression line for the mean can- 
opy height is significantly diffrrent from the identity line. 
While the r’ values ass&iated with the stem map data 
set were lower than those associated with the &ono- 
sequence data set, this is due to differences in the range 
of conditions found in each data set, not the strength of 
relationships relating height indices to stand structure 
attributes. 

Stepwise Multiple Regression 

The objective of the stepwise multiple regression analysis 
was to see if the individual elements of the canopy height 
profile colllcl improve the predictions of stand structure 
attributes, as compared with simple regressions using 
height indices. The stepwise multiple regressions ex- 
plained as much variance as linear regression with can- 
opv height indices, but the resulting equations were less 
apilicable to the stem map data set than the best height 
index, the QMCH. Working with a data set of canopy 
height profiles tar two sites with differing composition, 
Lehky (1997) suggests that the height index approach is 
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qualitatively preferable, because it is probably less site 
specific than predictions made directly from the canopy 
height profile. That the percentage of variance e.xplained 
by each approach is similar is indicative that the height 
index approach is probably explaining as much variance 
as can be explained. 

Height Index Approach 
The height index approaoh usecl in this work is similar 
to that previously used in the analysis of first-return laser 
altimeters. Many approaches to the analysis of that data 
have followed the work of Maclean (1982), who showecl 
that the area between a line following the height of the 
canopy, and another following the ground surface, is 
closely and linearly related to the natural logarithm of 
stand volume. The area between these two lines mea- 
siires the average height of the upper surface of the can- 
opy. Large footprint surface lidar systems, such as the 
one used in this article, do not provide a high resolution 
record of this measurement. However, within the large 
footprint wlrveform, the distribution of vertical surfaces 
is recorded. A weighted height index performs the same 
function as the canopy height trace-except that it inte- 
grates the height distribution of the entire canopy, not 
just its outer surface, as in Naesset (1997a). The cariopy 
height profile transformation further serves to correct 
the vertical clistribution of returned power to reflect the 
power available for return from the canopy at each suc- 
cessive level through the canopy. The fact that a height 
index (the QMCH) that is weighted towards the top of 
the canopy does better than one that isn’t suggests that 
the height of the upper canopy surface may still be an 
important index for predicting stand attributes. 

The value of the coefficient of determination be- 
tween the stand structure attributes ant1 height indices 
for both data sets are consistent with those reported in 
the laser altimetry literature (Maclean, 1982; Nelson et 
al., 1988a,b; Nilsson, 1996; Hyyppa ant1 Hallikainen, 1996; 
Naesset, 1997a). A determination coefficient (8) of 61% 
has been reported for the prediction of basal area (Hy- 
yppa and Hallikainen, 1996), v~liile values between 53% 
and 92% have been reported for the prediction of stem 
voh~nr and biomass. We calculatc~cl an acljusted r” of 
70% for basal area and an adjusted P of 80% of biomass 
for the clironosecluence generated regression equations. 
While these equations were developed using f’ielcl esti- 
mates of canopy structiire, we have shown that they are 
applicable to the prediction of stand structure attributes 
from canopy height inclices measured using the SLICER 
scanning lidar system. Chile the 9 values of the predic- 
tions of basal area and biomass of plots from the stem 
map clata set were lower than those obtainecl with the 
chronosequence data set, the stanclard deviation of the 
residuals for both data sets are nearly equal, The higher 

P values for equations developed with the chrono- 
sequence clata reflects its wider and more uniform distri- 
bution of conditions. 

We have seen that the regressions relating the field 
measured QMCH index to basal area and biomass are 
applicable to remotely sensed height indices, for the 
range of stand conditions observed in the stem map data 
set. Can this conclusion be applied to the whole range 
of conditions found in the chronosequence data set? If 
the error in the remotely sensed QMCH estimate is con- 
stant tlirougliout the range of canopy structure concli- 
tions, we can. At present, no clirect evidence is available 
to answer this question. Some steps in the processing of 
the raw waveform clata, such as the delineation of the 
ground return, could tend to introduce a constant error 
into the estimates of the canopy height profile, which 
will have an larger proportional effect on shorter stands, 
but such an effect has not yet been identified. If the abil- 
ity to remotely sense the canopy height profile is con- 
stant, it is logical to conclude that the overall strength 
and the coefficients of the relationship between remotely 
sensed height and field-collected stand structure attri- 
butes is the same as that found between optical-cluadrat 
method height indices and stand structure indices. 

&%cn considered along with the results of Lefsky 
(1997) which concludes that field and SLICER sensed 
canopy height profiles were statistically indistinguishable, 
this work supports the premise that SLICER ant1 field 
collectecl profiles are directly comparable. If the success 

in validating SLICER is extended to other forest types, 
it would provide an unprecedented level of flexibilitv in 
developing remote sensing applications using surface Ii- 
dar techniques. Whereas conventional optical and radar 
remote sensing platforms do not have conveniently mea- 
siired field analogues for their measureinents, existing re- 
lationships between maximum canopy height and forest 
ecosystem structure and function can be applied directly 
to surface liclar remote sensing. For those forest types 
where the MacArthur-Horn technique can be applied, 
field estimatcbs of the canopy height profile can offer 
“proof of concept” support to new analyses, without the 
difficult\: of obtaining laser altimetry and geolocating the 
laser footprints in the field, althouc$ the 15 m error in 
footprint position did not seem to overly effect this cm- 
rent work. Current work to establish a laser altimetry 
profile nieasurement capability for use in the field will 
increase tlie desirability of this approach. 

CONCLUSIONS 

Indices ineasuring the vertical distribution of canopy 
structure are highly correlated with stand basal area and 
aboveground biomass. Kelationships developed using field 
measurecl canopy height profiles were found to be appli- 
cable, in varying degrees, to remotely sensed canopy height 
profiles. The cluadratie mean canopy height (QMCH) was 
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the height index which was both highly correlated to 
both basal area and aboveground biomass, and had the 
best overall predictions of the stand attributes of the re- 
motely sensed data set. We find that reasonable because 
the QMCH is a weighted average of the canopy height 
profile, where the weights are proportional to the 
amount of woody structure required to support foliage at 
each height. Stepwise multiple regression of basal area 
and biomass using the canopy height profile vector as in- 
dependent variables did increase the power of the field- 
measured regression equations, but were not as applica- 
ble to the remotely sensed data set as was the QMCH. 
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